A Bernstein Polynomial Collocation Method for the Solution of Elliptic Boundary Value Problems

نویسندگان

  • Nikola Mirkov
  • Bosko Rasuo
چکیده

In this article, a formulation of a point-collocation method in which the unknown function is approximated using global expansion in tensor product Bernstein polynomial basis is presented. Bernstein polynomials used in this study are defined over general interval [a, b]. Method incorporates several ideas that enable higher numerical efficiency compared to Bernstein polynomial methods that have been previously presented. The approach is illustrated by a solution of Poisson, Helmholtz and Biharmonic equations with Dirichlet and Neumann type boundary conditions. Comparisons with analytical solutions are given to demonstrate the accuracy and convergence properties of the current procedure. The method is implemented in an open-source code, and a library for manipulation of Bernstein polynomials bernstein-poly, developed by the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme

We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...

متن کامل

A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method

In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...

متن کامل

NON-POLYNOMIAL QUARTIC SPLINE SOLUTION OF BOUNDARY-VALUE PROBLEM

Quartic non-polynomial spline function approximation in off step points is developed, for the solution of fourth-order boundary value problems. Using consistency relation of such spline and suitable choice of parameter,we have obtained second, fourth and sixth orders methods. Convergence analysis of sixth order method has been given. The methods are illustrated by some examples, to verify the or...

متن کامل

A Collocation-i/ '-Galerkin Method for Some Elliptic Equations

A collocation-//"'-Galerkin method is defined for some elliptic boundary value problems on a rectangle. The method uses tensor products of discontinuous piecewise polynomial spaces and collocation based on Jacobi points with weight function >c2(l x)2. Optimal order of L2 rates of convergence is established for the approximation solution. A numerical example which confirms these results is prese...

متن کامل

An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1211.3567  شماره 

صفحات  -

تاریخ انتشار 2012